If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2+38k-8=0
a = 10; b = 38; c = -8;
Δ = b2-4ac
Δ = 382-4·10·(-8)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-42}{2*10}=\frac{-80}{20} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+42}{2*10}=\frac{4}{20} =1/5 $
| -8d=-48 | | 12r^2+75r+108=0 | | (6*2n)/8=15 | | F(x)=50(0.7)* | | -2=-5x-2 | | -2=-5x+2 | | 18b^2-21b+5=0 | | 79=4x-1 | | (x-8)(7+8)=0 | | w2+19w+90=0 | | -18y+9y-5y+8y-(-20)=14 | | x^2/(0.126-x)=6.31*10^-6 | | q2+26q=11 | | 62=r+6 | | 11=d+6 | | 20n^2-13n-2=0 | | 4c+3=32 | | 6(x+2)+4x=52 | | -x+4=-3x+2 | | 3f+14=2f+14 | | z=-10−z | | 5x+13=-4x+(-5) | | -9t=-8t+8 | | -6y(y-4)=24 | | 7r=6r−4 | | 2x-(-10)=-5x-4 | | x2+13=28 | | 2x+3x+3=-7 | | .6666n+4=10 | | x+15=3(X+5) | | 3x=36x^2 | | 7u-4=0.25 |